Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(16): e2304861, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38355304

RESUMO

An ideal hydrogel for stem cell therapy would be injectable and efficiently promote stem cell proliferation and differentiation in body. Herein, an injectable, single-component hydrogel with hyaluronic acid (HA) modified with phenylboronic acid (PBA) and spermidine (SM) is introduced. The resulting HAps (HA-PBA-SM) hydrogel is based on the reversible crosslinking between the diol and the ionized PBA, which is stabilized by the SM. It has a shear-thinning property, enabling its injection through a syringe to form a stable hydrogel inside the body. In addition, HAps hydrogel undergoes a post-injection "self-curing," which stiffens the hydrogel over time. This property allows the HAps hydrogel to meet the physical requirements for stem cell therapy in rigid tissues, such as bone, while maintaining injectability. The hydrogel enabled favorable proliferation of human mesenchymal stem cells (hMSCs) and promoted their differentiation and mineralization. After the injection of hMSCs-containing HAps into a rat femoral defect model, efficient osteogenic differentiation of hMSCs and bone regeneration is observed. The study demonstrates that simple cationic modification of PBA-based hydrogel enabled efficient gelation with shear-thinning and self-curing properties, and it would be highly useful for stem cell therapy and in vivo bone regeneration.


Assuntos
Regeneração Óssea , Ácidos Borônicos , Diferenciação Celular , Hidrogéis , Células-Tronco Mesenquimais , Animais , Regeneração Óssea/fisiologia , Ratos , Hidrogéis/química , Células-Tronco Mesenquimais/citologia , Humanos , Ácido Hialurônico/química , Ratos Sprague-Dawley , Encapsulamento de Células/métodos , Proliferação de Células , Osteogênese/fisiologia , Modelos Animais de Doenças , Espermidina/farmacologia , Espermidina/química
2.
Biomolecules ; 12(12)2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36551231

RESUMO

Mesenchymal stem/stromal cells (MSC) promote recovery in a wide range of animal models of injury and disease. They can act in vivo by differentiating and integrating into tissues, secreting factors that promote cell growth and control inflammation, and interacting directly with host effector cells. We focus here on MSC secreted factors by encapsulating the cells in alginate microspheres, which restrict cells from migrating out while allowing diffusion of factors including cytokines across the capsules. One week after intrathecal lumbar injection of human bone marrow MSC encapsulated in alginate (eMSC), rat IL-10 expression was upregulated in distant rat spinal cord injury sites. Detection of human IL-10 protein in rostrally derived cerebrospinal fluid (CSF) indicated distribution of this human MSC-secreted cytokine throughout rat spinal cord CSF. Intraperitoneal (IP) injection of eMSC in a rat model for endotoxemia reduced serum levels of inflammatory cytokines within 5 h. Detection of human IL-6 in sera after injection of human eMSC indicates rapid systemic distribution of this human MSC-secreted cytokine. Despite proof of concept for eMSC in various disorders using animal models, translation of encapsulation technology has not been feasible primarily because methods for scale-up are not available. To scale-up production of eMSC, we developed a rapid, semi-continuous, capsule collection system coupled to an electrosprayer. This system can produce doses of encapsulated cells sufficient for use in clinical translation.


Assuntos
Anti-Inflamatórios , Encapsulamento de Células , Citocinas , Células-Tronco Mesenquimais , Animais , Humanos , Ratos , Alginatos , Encapsulamento de Células/métodos , Citocinas/metabolismo , Interleucina-10/metabolismo
3.
Bull Cancer ; 109(1): 38-48, 2022 Jan.
Artigo em Francês | MEDLINE | ID: mdl-34996600

RESUMO

Monolayer cultures of cell lines and derived-patient cells have long been the in vitro model of choice in oncology. In particular, these models have made it possible to decipher the mechanisms that determine tumor proliferation and invasion. However these 2D models are insufficient because they do not take into account the spatial organization of cells and their interactions with each other or with the extracellular matrix. In the context of cancer, there is a need to develop new 3D (tumoroid) models in order to gain a better understanding of the development of these pathologies but also to assess the penetration of drugs through a tissue and the associated cellular response. We present here the cell capsule technology (CCT), which allows the production of different tumoroid models: simple or more complex 3D culture models including co-culture of tumor cells with components of the microenvironment (fibroblasts, matrix, etc.). The development of these new 3D culture systems now makes it possible to propose refined physiopathological models that will allow the implementation of improved targeted therapeutic strategies.


Assuntos
Técnicas de Cultura de Células em Três Dimensões/métodos , Encapsulamento de Células/métodos , Organoides , Esferoides Celulares , Alginatos , Fibroblastos Associados a Câncer , Comunicação Celular , Proliferação de Células , Técnicas de Cocultura/métodos , Transição Epitelial-Mesenquimal , Matriz Extracelular/química , Humanos , Invasividade Neoplásica , Células Tumorais Cultivadas , Microambiente Tumoral
4.
ACS Appl Mater Interfaces ; 14(1): 214-224, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34935338

RESUMO

Smart hydrogels with versatile properties, including a tunable gelation time, nonswelling attributes, and biocompatibility, are in great need in the biomedical field. To meet this urgent demand, we explored novel biomaterials with the desired properties from sessile marine organisms. To this end, a novel protein, Sbp9, derived from scallop byssus was extensively investigated, which features typical epidermal growth factor-like (EGFL) multiple repetitive motifs. Our current work demonstrated that the key fragment of Sbp9 (calcium-binding domain (CBD) and 4 EGFL repeats (CE4)) was able to form a smart hydrogel driven by noncovalent interactions and facilitated by disulfide bonds. More importantly, this smart hydrogel demonstrates several desirable and beneficial features, which could offset the drawbacks of typical protein-based hydrogels, including (1) a redox-responsive gelation time (from <1 to 60 min); (2) tunable mechanical properties, nonswelling abilities, and an appropriate microstructure; and (3) good biocompatibility and degradability. Furthermore, proof-of-concept demonstrations showed that the newly discovered hydrogel could be used for anticancer drug delivery and cell encapsulation. Taken together, a smart hydrogel inspired by marine sessile organisms with desirable properties was generated and characterized and demonstrated to have extensive applicability potential in biomedical applications, including tissue engineering and drug release.


Assuntos
Proteínas de Ligação ao Cálcio/química , Encapsulamento de Células/métodos , Portadores de Fármacos/química , Hidrogéis/química , Pectinidae/química , Materiais Inteligentes/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Antineoplásicos/química , Proteínas de Ligação ao Cálcio/toxicidade , Linhagem Celular Tumoral , Doxorrubicina/química , Portadores de Fármacos/toxicidade , Liberação Controlada de Fármacos , Humanos , Hidrogéis/toxicidade , Peróxido de Hidrogênio/química , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Oxirredução , Porosidade , Domínios Proteicos , Ratos Sprague-Dawley , Materiais Inteligentes/toxicidade
5.
Int J Mol Sci ; 22(23)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34884785

RESUMO

Drought is a major abiotic stress imposed by climate change that affects crop production and soil microbial functions. Plants respond to water deficits at the morphological, biochemical, and physiological levels, and invoke different adaptation mechanisms to tolerate drought stress. Plant growth-promoting bacteria (PGPB) can help to alleviate drought stress in plants through various strategies, including phytohormone production, the solubilization of mineral nutrients, and the production of 1-aminocyclopropane-1-carboxylate deaminase and osmolytes. However, PGPB populations and functions are influenced by adverse soil factors, such as drought. Therefore, maintaining the viability and stability of PGPB applied to arid soils requires that the PGPB have to be protected by suitable coatings. The encapsulation of PGPB is one of the newest and most efficient techniques for protecting beneficial bacteria against unfavorable soil conditions. Coatings made from polysaccharides, such as sodium alginate, chitosan, starch, cellulose, and their derivatives, can absorb and retain substantial amounts of water in the interstitial sites of their structures, thereby promoting bacterial survival and better plant growth.


Assuntos
Bactérias/metabolismo , Encapsulamento de Células/métodos , Secas , Desenvolvimento Vegetal/fisiologia , Raízes de Plantas/microbiologia , Polissacarídeos/metabolismo , Aclimatação/fisiologia , Alginatos/metabolismo , Carbono-Carbono Liases/metabolismo , Quitosana/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Plantas/microbiologia , Rizosfera , Microbiologia do Solo , Estresse Fisiológico/fisiologia
6.
Int J Mol Sci ; 22(22)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34830145

RESUMO

Hydrogels constructed from naturally derived polymers provide an aqueous environment that encourages cell growth, however, mechanical properties are poor and degradation can be difficult to predict. Whilst, synthetic hydrogels exhibit some improved mechanical properties, these materials lack biochemical cues for cells growing and have limited biodegradation. To produce hydrogels that support 3D cell cultures to form tissue mimics, materials must exhibit appropriate biological and mechanical properties. In this study, novel organic-inorganic hybrid hydrogels based on chitosan and silica were prepared using the sol-gel technique. The chemical, physical and biological properties of the hydrogels were assessed. Statistical analysis was performed using One-Way ANOVAs and independent-sample t-tests. Fourier transform infrared spectroscopy showed characteristic absorption bands including amide II, Si-O and Si-O-Si confirming formation of hybrid networks. Oscillatory rheometry was used to characterise the sol to gel transition and viscoelastic behaviour of hydrogels. Furthermore, in vitro degradation revealed both chitosan and silica were released over 21 days. The hydrogels exhibited high loading efficiency as total protein loading was released in a week. There were significant differences between TC2G and C2G at all-time points (p < 0.05). The viability of osteoblasts seeded on, and encapsulated within, the hydrogels was >70% over 168 h culture and antimicrobial activity was demonstrated against Pseudomonas aeruginosa and Enterococcus faecalis. The hydrogels developed here offer alternatives for biopolymer hydrogels for biomedical use, including for application in drug/cell delivery and for bone tissue engineering.


Assuntos
Encapsulamento de Células/métodos , Quitosana/química , Sistemas de Liberação de Medicamentos/métodos , Hidrogéis/química , Dióxido de Silício/química , Antibacterianos/química , Antibacterianos/farmacologia , Técnicas de Cultura de Células em Três Dimensões/métodos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Enterococcus faecalis/efeitos dos fármacos , Humanos , Hidrogéis/farmacologia , Microscopia Eletrônica de Varredura , Transição de Fase , Espectroscopia de Prótons por Ressonância Magnética , Pseudomonas aeruginosa/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier , Engenharia Tecidual/métodos
7.
Viruses ; 13(10)2021 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-34696362

RESUMO

Modern bacteriophage encapsulation methods based on polymers such as alginate have been developed recently for their use in phage therapy for veterinary purposes. In birds, it has been proven that using this delivery system allows the release of the bacteriophage in the small intestine, the site of infection by Salmonella spp. This work designed an approach for phage therapy using encapsulation by ionotropic gelation of the lytic bacteriophage S1 for Salmonella enterica in 2% w/v alginate beads using 2% w/v calcium chloride as crosslinking agent. This formulation resulted in beads with an average size of 3.73 ± 0.04 mm and an encapsulation efficiency of 70%. In vitro, the beads protected the bacteriophages from pH 3 and released them at higher pH. To confirm that this would protect the bacteriophages from gastrointestinal pH changes, we tested the phage infectivity in vivo assay. Using a model chicken (Gallus gallus domesticus) infected with Salmonella Enteritidis, we confirmed that after 3 h of the beads delivery, infective phages were present in the chicken's duodenal and caecal sections. This study demonstrates that our phage formulation is an effective system for release and delivery of bacteriophage S1 against Salmonella Enteritidis with potential use in the poultry sector.


Assuntos
Terapia por Fagos/métodos , Fagos de Salmonella/metabolismo , Alginatos/química , Animais , Bacteriófagos , Ceco/metabolismo , Encapsulamento de Células/métodos , Galinhas/microbiologia , Trato Gastrointestinal/metabolismo , Microesferas , Aves Domésticas/virologia , Fagos de Salmonella/genética , Salmonella enterica/metabolismo , Salmonella enterica/virologia
8.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34504013

RESUMO

Islet transplantation for type 1 diabetes treatment has been limited by the need for lifelong immunosuppression regimens. This challenge has prompted the development of macroencapsulation devices (MEDs) to immunoprotect the transplanted islets. While promising, conventional MEDs are faced with insufficient transport of oxygen, glucose, and insulin because of the reliance on passive diffusion. Hence, these devices are constrained to two-dimensional, wafer-like geometries with limited loading capacity to maintain cells within a distance of passive diffusion. We hypothesized that convective nutrient transport could extend the loading capacity while also promoting cell viability, rapid glucose equilibration, and the physiological levels of insulin secretion. Here, we showed that convective transport improves nutrient delivery throughout the device and affords a three-dimensional capsule geometry that encapsulates 9.7-fold-more cells than conventional MEDs. Transplantation of a convection-enhanced MED (ceMED) containing insulin-secreting ß cells into immunocompetent, hyperglycemic rats demonstrated a rapid, vascular-independent, and glucose-stimulated insulin response, resulting in early amelioration of hyperglycemia, improved glucose tolerance, and reduced fibrosis. Finally, to address potential translational barriers, we outlined future steps necessary to optimize the ceMED design for long-term efficacy and clinical utility.


Assuntos
Encapsulamento de Células/métodos , Sistemas de Liberação de Medicamentos/métodos , Células Secretoras de Insulina/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Convecção , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/metabolismo , Sistemas de Liberação de Medicamentos/instrumentação , Insulina/metabolismo , Secreção de Insulina/efeitos dos fármacos , Secreção de Insulina/fisiologia , Células Secretoras de Insulina/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Transplante das Ilhotas Pancreáticas/métodos , Masculino , Ratos
9.
ACS Appl Mater Interfaces ; 13(39): 46282-46290, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34558893

RESUMO

Live microbes such as lactobacilli have long been used as probiotic supplements and, more recently, have been explored as live biotherapeutic products with the potential to treat a range of conditions. Among these microbes is a category of anaerobes that possess therapeutic potential while exhibiting unique oxygen sensitivity and thus requiring careful considerations in the formulation and storage processes. Existing microbial formulation development has focused on facultative anaerobes with natural oxygen tolerance; a few strategies have been reported for anaerobes with demonstrated oxygen intolerance, warranting novel approaches toward addressing the challenges for these oxygen-sensitive anaerobes. Here, we develop a polymeric encapsulation system for the formulation and storage of Bifidobacterium adolescentis (B. adolescentis), a model anaerobe that loses viability in aerobic incubation at 37 °C within 1 day. We discover that this strain remains viable under aerobic conditions for 14 days at 4 °C, enabling formulation development such as solution casting and air drying in an aerobic environment. Next, through a systematic selection of polymer encapsulants and excipients, we show that encapsulation with poly(vinyl alcohol) (PVA) acts as an oxygen barrier and facilitates long-term storage of B. adolescentis, which is partially attributed to reduced generation of reactive oxygen species. Lastly, PVA-based formulations can produce oral capsule-loaded films and edible gummy bears, demonstrating its compatibility with both pharmaceutical and food dosage forms.


Assuntos
Bifidobacterium adolescentis , Encapsulamento de Células/métodos , Álcool de Polivinil/química , Probióticos/administração & dosagem , Bifidobacterium adolescentis/metabolismo , Cápsulas , Excipientes/química , Tecnologia de Alimentos , Probióticos/metabolismo , Espécies Reativas de Oxigênio/metabolismo
10.
ACS Appl Mater Interfaces ; 13(35): 42114-42124, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34428375

RESUMO

We propose a compound interfacial shearing (CIS) process for versatile production of monodisperse Janus emulsions with controllable structural and topographic features. The process induces an active periodic force to decouple material and process parameters, enables independent control of compartmental features in Janus emulsions, and facilitates inline and on-demand generation of various geometric features for a large variety of process parameters and material properties. Janus emulsions of poly(ethylene glycol) diacrylate (PEGDA) with a controlled number of compartments are produced by CIS and photopolymerized to form micro-hydrogels with designated interfacial curvatures. PEGDA micro-hydrogels can be further modified to achieve anisotropy of surface or internal features by the content of an oily dispersed phase. MCF-7 human breast cancer cells are encapsulated in micro-hydrogels for cell proliferation with satisfactory viability. By modifying PEGDA micro-hydrogels with RGDS-conjugated polystyrene microspheres, we have demonstrated the controlled spatial adhesion of MCF-7 cells and human umbilical vein endothelial cells (HUVECs) on the substrates of different three-dimensional (3D) curvatures. Our pilot study suggests a simple and potentially scalable approach to produce 3D substrates with controllable structural and topographic features for 3D guided cell organization.


Assuntos
Emulsões/química , Hidrogéis/química , Anisotropia , Adesão Celular/efeitos dos fármacos , Encapsulamento de Células/métodos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Células MCF-7 , Microesferas , Projetos Piloto , Polietilenoglicóis/química , Poliestirenos/química
11.
Adv Mater ; 33(37): e2008111, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34337776

RESUMO

The extracellular matrix (ECM) forms through hierarchical assembly of small and larger polymeric molecules into a transient, hydrogel-like fibrous network that provides mechanical support and biochemical cues to cells. Synthetic, fibrous supramolecular networks formed via non-covalent assembly of various molecules are therefore potential candidates as synthetic mimics of the natural ECM, provided that functionalization with biochemical cues is effective. Here, combinations of slow and fast exchanging molecules that self-assemble into supramolecular fibers are employed to form transient hydrogel networks with tunable dynamic behavior. Obtained results prove that modulating the ratio between these molecules dictates the extent of dynamic behavior of the hydrogels at both the molecular and the network level, which is proposed to enable effective incorporation of cell-adhesive functionalities in these materials. Excitingly, the dynamic nature of the supramolecular components in this system can be conveniently employed to formulate multicomponent supramolecular hydrogels for easy culturing and encapsulation of single cells, spheroids, and organoids. Importantly, these findings highlight the significance of molecular design and exchange dynamics for the application of supramolecular hydrogels as synthetic ECM mimics.


Assuntos
Encapsulamento de Células/métodos , Hidrogéis/química , Vasos Sanguíneos/citologia , Adesão Celular , Matriz Extracelular/química , Recuperação de Fluorescência Após Fotodegradação , Corantes Fluorescentes/química , Humanos , Polietilenoglicóis/química , Pirimidinonas/sangue , Células-Tronco/citologia , Células-Tronco/metabolismo
12.
Cells ; 10(7)2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34359882

RESUMO

Scaffolds of recombinant spider silk protein (spidroin) and hyaluronic acid (HA) hydrogel hold promise in combination with cell therapy for spinal cord injury. However, little is known concerning the human immune response to these biomaterials and grafted human neural stem/progenitor cells (hNPCs). Here, we analyzed short- and long-term in vitro activation of immune cells in human peripheral blood mononuclear cells (hPBMCs) cultured with/without recombinant spidroins, HA hydrogels, and/or allogeneic hNPCs to assess potential host-donor interactions. Viability, proliferation and phenotype of hPBMCs were analyzed using NucleoCounter and flow cytometry. hPBMC viability was confirmed after exposure to the different biomaterials. Short-term (15 h) co-cultures of hPBMCs with spidroins, but not with HA hydrogel, resulted in a significant increase in the proportion of activated CD69+ CD4+ T cells, CD8+ T cells, B cells and NK cells, which likely was caused by residual endotoxins from the Escherichia coli expression system. The observed spidroin-induced hPBMC activation was not altered by hNPCs. It is resource-effective to evaluate human compatibility of novel biomaterials early in development of the production process to, when necessary, make alterations to minimize rejection risk. Here, we present a method to evaluate biomaterials and hPBMC compatibility in conjunction with allogeneic human cells.


Assuntos
Fibroínas/farmacologia , Ácido Hialurônico/farmacologia , Hidrogéis/farmacologia , Células-Tronco Neurais/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos , Aborto Legal , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Encapsulamento de Células/métodos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura , Feminino , Feto , Fibroínas/química , Humanos , Ácido Hialurônico/química , Hidrogéis/química , Células Matadoras Naturais/citologia , Células Matadoras Naturais/imunologia , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/imunologia , Ativação Linfocitária , Modelos Biológicos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/imunologia , Gravidez , Primeiro Trimestre da Gravidez , Cultura Primária de Células , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacologia , Medula Espinal/citologia , Medula Espinal/imunologia , Traumatismos da Medula Espinal/imunologia , Traumatismos da Medula Espinal/patologia
13.
Int J Mol Sci ; 22(13)2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34281201

RESUMO

Hollow vesicles made from a single or double layer of block-copolymer molecules, called polymersomes, represent an important technological platform for new developments in nano-medicine and nano-biotechnology. A central aspect in creating functional polymersomes is their combination with proteins, especially through encapsulation in the inner cavity of the vesicles. When producing polymersomes by techniques such as film rehydration, significant proportions of the proteins used are trapped in the vesicle lumen, resulting in high encapsulation efficiencies. However, because of the difficulty of scaling up, such methods are limited to laboratory experiments and are not suitable for industrial scale production. Recently, we developed a scalable polymersome production process in stirred-tank reactors, but the statistical encapsulation of proteins resulted in fairly low encapsulation efficiencies of around 0.5%. To increase encapsulation in this process, proteins were genetically fused with hydrophobic membrane anchoring peptides. This resulted in encapsulation efficiencies of up to 25.68%. Since proteins are deposited on the outside and inside of the polymer membrane in this process, two methods for the targeted removal of protein domains by proteolysis with tobacco etch virus protease and intein splicing were evaluated. This study demonstrates the proof-of-principle for production of protein-functionalized polymersomes in a scalable process.


Assuntos
Encapsulamento de Células/métodos , Nanotecnologia/métodos , Peptídeos/química , Polímeros/química , Proteínas/química , Interações Hidrofóbicas e Hidrofílicas , Membranas/química
14.
Adv Sci (Weinh) ; 8(16): e2100820, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34155834

RESUMO

Stem cell derived insulin producing cells or islets have shown promise in reversing Type 1 Diabetes (T1D), yet successful transplantation currently necessitates long-term modulation with immunosuppressant drugs. An alternative approach to avoiding this immune response is to utilize an islet macroencapsulation device, where islets are incorporated into a selectively permeable membrane that can protect the transplanted cells from acute host response, whilst enabling delivery of insulin. These macroencapsulation systems have to meet a number of stringent and challenging design criteria in order to achieve the ultimate goal of reversing T1D. In this progress report, the design considerations and functional requirements of macroencapsulation systems are reviewed, specifically for stem-cell derived islets (SC-islets), highlighting distinct design parameters. Additionally, a perspective on the future for macroencapsulation systems is given, and how incorporating continuous sensing and closed-loop feedback can be transformative in advancing toward an autonomous biohybrid artificial pancreas.


Assuntos
Encapsulamento de Células/métodos , Diabetes Mellitus Tipo 1/terapia , Transplante das Ilhotas Pancreáticas/métodos , Ilhotas Pancreáticas/metabolismo , Células-Tronco/metabolismo , Animais , Desenho de Equipamento
15.
Carbohydr Polym ; 266: 118128, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34044944

RESUMO

Conventional stem cell delivery typically utilize administration of directly injection of allogenic cells or domesticated autogenic cells. It may lead to immune clearance of these cells by the host immune systems. Alginate microgels have been demonstrated to improve the survival of encapsulated cells and overcome rapid immune clearance after transplantation. Moreover, alginate microgels can serve as three-dimensional extracellular matrix to support cell growth and protect allogenic cells from rapid immune clearance, with functions as delivery vehicles to achieve sustained release of therapeutic proteins and growth factors from the encapsulated cells. Besides, cell-loaded alginate microgels can potentially be applied in regenerative medicine by serving as injectable engineered scaffolds to support tissue regrowth. In this review, the properties of alginate and different methods to produce alginate microgels are introduced firstly. Then, we focus on diverse applications of alginate microgels for cell delivery in tissue engineering and regenerative medicine.


Assuntos
Alginatos/química , Transplante de Células/métodos , Microgéis/química , Medicina Regenerativa/métodos , Engenharia Tecidual/métodos , Tecidos Suporte/química , Animais , Encapsulamento de Células/métodos , Linhagem Celular Tumoral , Humanos
16.
AAPS PharmSciTech ; 22(4): 149, 2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-33961149

RESUMO

Parkinson's disease (PD) is the second most common neurological disorder, associated with decreased dopamine levels in the brain. The goal of this study was to assess the potential of a regenerative medicine-based cell therapy approach to increase dopamine levels. In this study, we used rat adrenal pheochromocytoma (PC12) cells that can produce, store, and secrete dopamine. These cells were microencapsulated in the selectively permeable polymer membrane to protect them from immune responses. For fabrication of the microcapsules, we used a modified Buchi spray dryer B-190 that allows for fast manufacturing of microcapsules and is industrially scalable. Size optimization of the microcapsules was performed by systematically varying key parameters of the spraying device. The short- and long-term stabilities of the microcapsules were assessed. In the in vitro study, the cells were found viable for a period of 30 days. Selective permeability of the microcapsules was confirmed via dopamine release assay and micro BCA protein assay. We found that the microcapsules were permeable to the small molecules including dopamine and were impermeable to the large molecules like BSA. Thus, they can provide the protection to the encapsulated cells from the immune cells. Griess's assay confirmed the non-immunogenicity of the microcapsules. These results demonstrate the effective fabrication of microcapsules encapsulating cells using an industrially scalable device. The microcapsules were stable, and the cells were viable inside the microcapsules and were found to release dopamine. Thus, these microcapsules have the potential to serve as the alternative or complementary treatment approach for PD.


Assuntos
Compostos de Alumínio/síntese química , Cápsulas/síntese química , Encapsulamento de Células/métodos , Terapia Baseada em Transplante de Células e Tecidos/métodos , Doença de Parkinson , Compostos de Sódio/síntese química , Compostos de Alumínio/administração & dosagem , Compostos de Alumínio/metabolismo , Animais , Encéfalo/metabolismo , Cápsulas/administração & dosagem , Cápsulas/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Dopamina/metabolismo , Camundongos , Células PC12 , Doença de Parkinson/metabolismo , Doença de Parkinson/terapia , Polímeros/administração & dosagem , Polímeros/síntese química , Polímeros/metabolismo , Estudos Prospectivos , Células RAW 264.7 , Ratos , Compostos de Sódio/administração & dosagem , Compostos de Sódio/metabolismo , Resultado do Tratamento
17.
ACS Synth Biol ; 10(5): 1237-1244, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-33969993

RESUMO

A novel cell free protein synthesis (CFPS) system utilizing layer-by-layer (LbL) polymer assembly was developed to reduce the operational cost of conventional CFPS. This yielded an encapsulated cell system, dubbed "eCells", that successfully performs in vitro CFPS and allows cost-effective incorporation of noncanonical amino acids into proteins. The use of eCells in CFPS circumvents the need for traditional cell lysate preparation and purification of amino acyl-tRNA synthetases (aaRS) while still retaining the small scale of an in vitro reaction. eCells were found to be 55% as productive as standard dialysis CFPS at 13% of the cost. The reaction was shown to be scalable over a large range of reaction volumes, and the crowding environment in eCells confers a stabilizing effect on marginally stable proteins, such as the pyrrolysl tRNA synthetase (PylRS), providing a means for their application in in vitro protein expression. Photocaged-cysteine (PCC) and Nε-(tert-butoxycarbonyl)-l-lysine (Boc-lysine) were incorporated into Peptidyl-prolyl cis-trans isomerase B (PpiB) using small amounts of ncAA with an adequate yield of protein. Fluorescent activated cell sorting (FACS) was used to demonstrate the partition of the lysate within the eCells in contrast to standard one pot cell lysate-based methods.


Assuntos
Células Artificiais/metabolismo , Proteínas de Escherichia coli/biossíntese , Escherichia coli/genética , Escherichia coli/metabolismo , Engenharia Metabólica/métodos , Biossíntese de Proteínas , Aminoácidos/metabolismo , Aminoacil-tRNA Sintetases/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Encapsulamento de Células/métodos , Sistema Livre de Células/metabolismo , Cisteína/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Lisina/análogos & derivados , Lisina/metabolismo , Transcrição Gênica/genética
18.
Molecules ; 26(6)2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33801934

RESUMO

Yogurt is a nutritious food that is regularly consumed in many countries around the world and is widely appreciated for its organoleptic properties. Despite its contribution to human dietary requirements, yogurt in its traditional recipe is a poor source of fat-soluble vitamins. To respond to consumer demands and further increase the nutritional value of this product, this work aimed to fortify yogurt with vitamin E by using emulsification as the method of encapsulation. The effects of thermal processing and chilled storage on the physicochemical stability of the yogurt-based beverage was investigated. Vitamin E was only minorly affected by bulk pasteurization at 63 °C for 30 min and remained stable during storage at 4 °C for 28 days. Fortified samples showed increased in vitro antioxidant activity compared with non-fortified samples. Lactic acid bacterial counts were above the minimum recommended levels (>106 cfu/g) after processing and storage. In conclusion, this work has demonstrated that emulsification can be an effective strategy for developing yogurt-based products fortified with fat soluble vitamins.


Assuntos
Encapsulamento de Células/métodos , Vitamina E/análise , Iogurte/análise , Animais , Técnicas de Cultura Celular por Lotes/métodos , Bebidas , Emulsões/química , Emulsões/farmacologia , Fermentação , Manipulação de Alimentos , Alimentos Fortificados/análise , Leite/química , Pasteurização/métodos , Vitamina E/química
19.
Reprod Sci ; 28(6): 1697-1708, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33511540

RESUMO

Although menopausal hormone therapy (MHT) is the most effective approach to managing the loss of ovarian activity, serious side effects have been reported. Cell-based therapy is a promising alternative for MHT. This study constructed engineered ovarian cell spheroids and investigated their endocrine function. Theca and granulosa cells were isolated from ovaries of 10-week-old rats. Two types of engineered ovarian cell spheroids were fabricated through forced aggregation in microwells, multilayered spheroids with centralized granulosa aggregates surrounded by an outer layer of theca cells and mixed ovarian spheroids lacking spatial rearrangement. The ovarian cell spheroids were encapsulated into a collagen gel. Non-aggregated ovarian cells served as controls. The endocrine function of the engineered ovarian spheroids was assessed over 30 days. The structure of the spheroids was well maintained during culture. The secretion of 17ß-estradiol from both types of engineered ovarian cell spheroids was higher than in the control group and increased continuously in a time-dependent manner. Secretion of 17ß-estradiol in the multi-layered ovarian cell spheroids was higher than in the non-layered constructs. Increased secretion of progesterone was detected in the multi-layered ovarian cell spheroids at day 5 of culture and was sustained during the culture period. The initial secretion level of progesterone in the non-layered ovarian cell spheroids was similar to those from the controls and increased significantly from days 21 to 30. An in vitro rat model of engineered ovarian cell spheroids was developed that was capable of secreting sex steroid hormones, indicating that the hormone secreting function of ovaries can be recapitulated ex vivo and potentially adapted for MHT.


Assuntos
Encapsulamento de Células/métodos , Células da Granulosa/citologia , Esferoides Celulares/metabolismo , Células Tecais/citologia , Animais , Técnicas de Cultura de Células em Três Dimensões , Sobrevivência Celular , Células Cultivadas , Meios de Cultivo Condicionados/análise , Estradiol/metabolismo , Terapia de Reposição de Estrogênios/métodos , Feminino , Menopausa , Progesterona/metabolismo , Ratos , Ratos Endogâmicos F344
20.
Mol Cell Probes ; 56: 101694, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33429040

RESUMO

The ability to preserve and transport human cells in a stable medium over long distances is critical to collaborative efforts and the advancement of knowledge in the study of human disease. This is particularly important in the study of rare diseases. Recently, advancements in the understanding of renal ciliopathies has been achieved via the use of patient urine-derived cells (UDCs). However, the traditional method of cryopreservation, although considered as the gold standard, can result in decreased sample viability of many cell types, including UDCs. Delays in transportation can have devastating effects upon the viability of samples, and may even result in complete destruction of cells following evaporation of dry ice or liquid nitrogen, leaving samples in cryoprotective agents, which are cytotoxic at room temperature. The loss of any patient sample in this manner is detrimental to research, however it is even more so when samples are from patients with a rare disease. In order to overcome the associated limitations of traditional practices, new methods of preservation and shipment, including cell encapsulation within hydrogels, and transport in specialised devices are continually being investigated. Here we summarise and compare traditional methods with emerging novel alternatives for the preservation and shipment of cells, and consider the effectiveness of such methods for use with UDCs to further enable the study and understanding of kidney diseases.


Assuntos
Encapsulamento de Células/métodos , Ciliopatias/terapia , Criopreservação/métodos , Células Epiteliais/citologia , Doenças Raras/terapia , Alginatos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Terapia Baseada em Transplante de Células e Tecidos/métodos , Quitosana/farmacologia , Ciliopatias/patologia , Colágeno/farmacologia , Crioprotetores/farmacologia , Combinação de Medicamentos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/transplante , Gelatina/farmacologia , Humanos , Hidrogéis/química , Hidrogéis/farmacologia , Rim/patologia , Laminina/farmacologia , Proteoglicanas/farmacologia , Doenças Raras/patologia , Meios de Transporte/métodos , Urotélio/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...